local OCR

This commit is contained in:
Scott Pruett 2022-06-02 22:57:45 -04:00
parent d3dfa83f32
commit db2c73d0c1
14 changed files with 1721 additions and 49 deletions

1
.gitignore vendored
View File

@ -1 +1,2 @@
/target
/ocr_data

37
Cargo.lock generated
View File

@ -1761,6 +1761,12 @@ dependencies = [
"miniz_oxide",
]
[[package]]
name = "ppv-lite86"
version = "0.2.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eb9f9e6e233e5c4a35559a617bf40a4ec447db2e84c20b55a6f83167b7e57872"
[[package]]
name = "proc-macro-crate"
version = "1.1.3"
@ -1789,6 +1795,36 @@ dependencies = [
"proc-macro2",
]
[[package]]
name = "rand"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
dependencies = [
"libc",
"rand_chacha",
"rand_core",
]
[[package]]
name = "rand_chacha"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6c10a63a0fa32252be49d21e7709d4d4baf8d231c2dbce1eaa8141b9b127d88"
dependencies = [
"ppv-lite86",
"rand_core",
]
[[package]]
name = "rand_core"
version = "0.6.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d34f1408f55294453790c48b2f1ebbb1c5b4b7563eb1f418bcfcfdbb06ebb4e7"
dependencies = [
"getrandom",
]
[[package]]
name = "raw-window-handle"
version = "0.4.3"
@ -2176,6 +2212,7 @@ dependencies = [
"futures",
"image 0.24.2",
"img_hash",
"rand",
"reqwest",
"scrap",
"serde",

View File

@ -25,3 +25,5 @@ img_hash = "3"
csv = "1"
time = { version = "0.3", features = ["formatting", "local-offset"] }
rand = "0.8"

View File

@ -59,5 +59,7 @@
"width": 30,
"height": 30
},
"ocr_server_endpoint": "https://tesserver.spruett.dev/"
"track_recognition_threshold": 10,
"ocr_server_endpoint": "https://tesserver.spruett.dev/",
"dump_frame_fraction": 0.05
}

View File

@ -1,30 +1,34 @@
{
"learned_images": {
"/////8/wz/DP8Ofwx/OH8wP5A/kH+Z/5//////////8=": "47"
"/////8/wz/DP8Ofwx/OH8wP5A/kH+Z/5//////////8=": "47",
"//////////////////////////////////////////8=": ""
},
"learned_tracks": {
"/////z/wv+e/77/vf///7P/vP9iP38+YD4AfwP////8=": "Rennvoort",
"//8//B/8z/0f/V/g/9w/+5/i3+Df/x/QH8D///////8=": "Tilksport GP",
"///////////////5/+G/yZ/TH/IPyB/AH8D///////8=": "Tilksport Rallycross",
"////5//Hf8I/4p/gz+DP99/zn4eflx+QP8D///////8=": "Whistle Valley",
"//8//p/8z/0f/X/i/8w/25/C3+nPzx/EH8j///////8=": "Tilksport Club",
"/////9//H//f/r/zP+QfzQ/YH8A/wj/I/+H///////8=": "Lost Lagoons",
"////5//Hf+I/4p/gz+DP99/zn4efnx+CP8D///////8=": "Whistle Valley",
"////5//Hf+I/4p/gz+DP99/zn4eflx+EP8D///////8=": "Whistle Valley",
"////5//Hf+I/4p/gz+DP99/zn4efn5+HP8D///////8=": "Whistle Valley",
"//8f/J/8z/0f/X/iP8w/2Z/C3+nfzx/PH8n///////8=": "Tilksport GP",
"///////////////5/8G/yZ/Dn+MPyB/OH8j/+f////8=": "Tilksport Rallycross",
"/////z/wv+e/zz/vf+Z/7P/ID9gPkc+fD8Kf4P////8=": "Rennvoort",
"/////3/wv+e/zz/vf+Z/5P/oH9iP2c+fD8KfwP////8=": "Rennvoort",
"/////////////3/AH4APgA/QD8iP4R/4f/z///////8=": "Buffalo Hill",
"//8f/o/+j/4f/z/8P/x//H/mf+7/9P/0//H/+f////8=": "Copperwood Club",
"//8f/o/8z/6P/h/8P/1/8X/if+b/5P/0//H/+/////8=": "Copperwood Club",
"////z//Af55/zj/jn/Hf/c/Bz48Pgw/A//////////8=": "Sugar Hill",
"//////////+f/x//H/7f/N/A34HPn8+DD8AfwP////8=": "Magdalena Club",
"/////z/wv/+/zz/vf+Z/5P/IH9gP2c+cD8CfwP////8=": "Rennvoort",
"////5//Hf+I/4p/gz+DP99/zn4efnx+AP8D///////8=": "Whistle Valley",
"//7//v/8f/x//U//H+Ifwj+ev9a/85/xH/j//P////8=": "Interstate",
"//8//z//H/gfwB/ET9DP04/MH+D/4f////////////8=": "Maple Ridge",
"//8/+B/yT/RPxR/J/9Ofxw/mz8DP2x/BH8D///////8=": "Thunder Point",
"//8/5J/Ez8MfyX/g/8w/25/C3+nfzx/GH8D/+/////8=": "Tilksport GP"
"/////9//H//f/r/zP+QfzQ/YH8A/wj/I/+H///////8=": "Lost Lagoons",
"/////z/wv+e/77/vf///7P/vP9iP38+YD4AfwP////8=": "Rennvoort",
"//8f/J/8z/0f/X/iP8w/2Z/C3+nfzx/PH8n///////8=": "Tilksport GP",
"//7//v/8f/x//U//H+Ifwj+ev9a/85/xH/j//P////8=": "Interstate",
"//8f/o/8z/6P/h/8P/1/8X/if+b/5P/0//H/+/////8=": "Copperwood Club",
"////5//Hf8I/4p/gz+DP99/zn4eflx+QP8D///////8=": "Whistle Valley",
"///////////////5/8G/yZ/Dn+MPyB/OH8j/+f////8=": "Tilksport Rallycross",
"////5//Hf+I/4p/gz+DP99/zn4efnx+CP8D///////8=": "Whistle Valley",
"//8//p/8z/0f/X/i/8w/25/C3+nPzx/EH8j///////8=": "Tilksport Club",
"///////////////5/+G/yZ/TH/IPyB/AH8D///////8=": "Tilksport Rallycross",
"//8/zo/Mz8afxh/iP+h/6H/of+b/9P/0//n/+/////8=": "Copperwood GP",
"/////3/wv+e/zz/vf+Z/5P/oH9iP2c+fD8KfwP////8=": "Rennvoort",
"////z//Af55/zj/jn/Hf/c/Bz48Pgw/A//////////8=": "Sugar Hill",
"//8//B/8z/0f/V/g/9w/+5/i3+Df/x/QH8D///////8=": "Tilksport GP",
"//8fzo/Mz8afwh/iP+B/6H/qf+b/5P/0//H/+/////8=": "Copperwood GP",
"////5//Hf+I/4p/gz+DP99/zn4eflx+EP8D///////8=": "Whistle Valley",
"//8//z//H/gfwB/ET9DP04/MH+D/4f////////////8=": "Maple Ridge",
"//8f/o/+j/4f/z/8P/x//H/mf+7/9P/0//H/+f////8=": "Copperwood Club",
"/////z/wv+e/zz/vf+Z/7P/ID9gPkc+fD8Kf4P////8=": "Rennvoort",
"//8/5J/Ez8MfyX/g/8w/25/C3+nfzx/GH8D/+/////8=": "Tilksport GP",
"////5//Hf+I/4p/gz+DP99/zn4efn5+HP8D///////8=": "Whistle Valley",
"////5//Hf+I/4p/gz+DP99/zn4efnx+AP8D///////8=": "Whistle Valley",
"/////////////3/AH4APgA/QD8iP4R/4f/z///////8=": "Buffalo Hill"
}
}

1352
learned_chars.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@ -157,3 +157,24 @@
2022-06-02-02:28 (Copperwood Club),Copperwood Club,50s GT,9,23.071,22.037,100,56,74,
2022-06-02-02:28 (Copperwood Club),Copperwood Club,50s GT,11,22.283,22.037,99,46,66,
2022-06-02-02:28 (Copperwood Club),Copperwood Club,50s GT,12,22.544,22.037,99,36,57,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,1,34.263,32.543,94,,,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,2,33.221,32.543,91,,,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,3,33.492,32.543,20,,,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,4,32.543,32.543,20,,,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,5,33.534,32.543,20,,,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,6,32.971,32.543,20,,,
2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,7,32.808,32.543,20,,,
2022-06-03-00:37 (Copperwood GP),Copperwood GP,Superlight,1,32.513,32.513,,,,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,1,22.672,20.296,100,89,92,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,2,20.418,20.296,100,80,85,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,3,20.296,20.296,100,71,78,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,4,20.791,20.296,100,62,70,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,5,20.495,20.296,100,52,62,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,6,20.443,20.296,100,43,54,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,7,23.803,20.296,100,35,45,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,8,29.227,20.296,100,76,93,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,9,20.561,20.296,100,67,85,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,10,20.420,20.296,100,57,77,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,11,21.062,20.296,100,48,69,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,12,20.942,20.296,100,39,61,
2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,13,20.576,20.296,100,30,52,

1 2022-05-22-20:39,whistle valley,gp,1,22.349,22.349,100,,
157 2022-06-02-02:28 (Copperwood Club),Copperwood Club,50s GT,9,23.071,22.037,100,56,74,
158 2022-06-02-02:28 (Copperwood Club),Copperwood Club,50s GT,11,22.283,22.037,99,46,66,
159 2022-06-02-02:28 (Copperwood Club),Copperwood Club,50s GT,12,22.544,22.037,99,36,57,
160 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,1,34.263,32.543,94,,,
161 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,2,33.221,32.543,91,,,
162 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,3,33.492,32.543,20,,,
163 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,4,32.543,32.543,20,,,
164 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,5,33.534,32.543,20,,,
165 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,6,32.971,32.543,20,,,
166 2022-06-03-00:38 (Copperwood GP),Copperwood GP,Superlight,7,32.808,32.543,20,,,
167 2022-06-03-00:37 (Copperwood GP),Copperwood GP,Superlight,1,32.513,32.513,,,,
168 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,1,22.672,20.296,100,89,92,
169 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,2,20.418,20.296,100,80,85,
170 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,3,20.296,20.296,100,71,78,
171 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,4,20.791,20.296,100,62,70,
172 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,5,20.495,20.296,100,52,62,
173 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,6,20.443,20.296,100,43,54,
174 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,7,23.803,20.296,100,35,45,
175 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,8,29.227,20.296,100,76,93,
176 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,9,20.561,20.296,100,67,85,
177 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,10,20.420,20.296,100,57,77,
178 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,11,21.062,20.296,100,48,69,
179 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,12,20.942,20.296,100,39,61,
180 2022-06-03-00:30 (Magdalena Club),Magdalena Club,60s GP,13,20.576,20.296,100,30,52,

View File

@ -167,15 +167,16 @@ fn add_saved_frame(
fn run_loop_once(capturer: &mut Capturer, state: &SharedAppState) -> Result<()> {
let frame = capture::get_frame(capturer)?;
let (config, learned_config, ocr_cache) = {
let (config, learned_config, ocr_cache, should_sample) = {
let locked = state.lock().unwrap();
(
locked.config.clone(),
locked.learned.clone(),
locked.ocr_cache.clone(),
locked.should_sample_ocr_data
)
};
let ocr_results = ocr::ocr_all_regions(&frame, config.clone(), learned_config, ocr_cache);
let ocr_results = ocr::ocr_all_regions(&frame, config.clone(), learned_config, ocr_cache, should_sample);
if state.lock().unwrap().debug_frames {
let debug_frames = save_frames_from(&frame, config.as_ref(), &ocr_results);

View File

@ -14,6 +14,7 @@ pub struct Config {
pub use_ocr_cache: Option<bool>,
pub ocr_interval_ms: Option<u64>,
pub track_recognition_threshold: Option<u32>,
pub dump_frame_fraction: Option<f64>,
}
impl Config {

View File

@ -1,4 +1,4 @@
use image::{RgbImage, DynamicImage, Rgb};
use image::{DynamicImage, Rgb, RgbImage};
use img_hash::{image::GenericImageView, ImageHash};
use crate::image_processing;
@ -8,7 +8,7 @@ struct BoundingBox {
x: u32,
y: u32,
width: u32,
height: u32
height: u32,
}
fn column_has_any_dark(image: &RgbImage, x: u32) -> bool {
@ -25,13 +25,13 @@ fn row_has_any_dark(image: &RgbImage, y: u32, start_x: u32, width: u32) -> bool
for x in start_x..(start_x + width) {
let [r, g, b] = image.get_pixel(x, y).0;
if r < 100 && g < 100 && b < 100 {
return true
return true;
}
}
false
}
fn take_while<F: Fn(u32) -> bool>(image: &RgbImage, x: &mut u32, max: u32, f: F) {
fn take_while<F: Fn(u32) -> bool>(x: &mut u32, max: u32, f: F) {
while *x < max && f(*x) {
*x = *x + 1;
}
@ -41,43 +41,69 @@ fn get_character_bounding_boxes(image: &RgbImage) -> Vec<BoundingBox> {
let mut x = 0;
let mut boxes = Vec::new();
while x < image.width() {
take_while(image, &mut x, image.width(), |x| !column_has_any_dark(image, x));
take_while(&mut x, image.width(), |x| !column_has_any_dark(image, x));
let start_x = x;
take_while(image, &mut x, image.width(), |x| column_has_any_dark(image, x));
take_while(&mut x, image.width(), |x| column_has_any_dark(image, x));
let width = x - start_x;
if width > 2 {
if width >= 1 {
let mut y = 0;
take_while(image, &mut y, image.height(), |y| !row_has_any_dark(image, y, start_x, width));
take_while(&mut y, image.height(), |y| {
!row_has_any_dark(image, y, start_x, width)
});
let start_y = y;
let mut inverse_y = 1;
take_while(image, &mut inverse_y, image.height(), |y| !row_has_any_dark(image, image.height() - y, start_x, width));
let end_y = image.height() - inverse_y - 1;
let mut inverse_y = 0;
take_while(&mut inverse_y, image.height(), |y| {
!row_has_any_dark(image, image.height() - 1 - y, start_x, width)
});
let end_y = image.height() - inverse_y;
let height = end_y - start_y;
if height >= 1 {
boxes.push(BoundingBox {
x,
x: start_x,
y: start_y,
width,
height: end_y - start_y,
height,
});
}
}
}
boxes
}
fn trim_to_bounding_box(image: &RgbImage, bounding_box: &BoundingBox) -> RgbImage {
let mut buffer = RgbImage::new(bounding_box.width, bounding_box.height);
const PADDING: u32 = 2;
let mut buffer = RgbImage::from_pixel(
bounding_box.width + 2 * PADDING,
bounding_box.height + 2 * PADDING,
Rgb([0xFF, 0xFF, 0xFF]),
);
for y in 0..bounding_box.height {
for x in 0..bounding_box.width {
buffer.put_pixel(x, y, *image.get_pixel(bounding_box.x + x, bounding_box.y + y));
buffer.put_pixel(
x + PADDING,
y + PADDING,
*image.get_pixel(bounding_box.x + x, bounding_box.y + y),
);
}
}
buffer
}
fn compute_box_hashes(image: &RgbImage) -> Vec<String> {
pub fn bounding_box_images(image: &RgbImage) -> Vec<RgbImage> {
let mut trimmed = Vec::new();
let boxes = get_character_bounding_boxes(image);
for bounding_box in boxes {
trimmed.push(trim_to_bounding_box(image, &bounding_box));
}
trimmed
}
pub fn compute_box_hashes(image: &RgbImage) -> Vec<String> {
let mut hashes = Vec::new();
let boxes = get_character_bounding_boxes(image);

View File

@ -8,6 +8,7 @@ mod ocr;
mod state;
mod stats_writer;
mod local_ocr;
mod training_ui;
use std::{
collections::HashMap,
@ -30,6 +31,10 @@ use state::{AppState, DebugOcrFrame, LapState, OcrCache, RaceState, SharedAppSta
use stats_writer::export_race_stats;
fn main() -> anyhow::Result<()> {
let mode = std::env::args().nth(1).unwrap_or_default().to_string();
if mode == "train" {
return training_ui::training_ui();
}
let app_state = AppState {
config: Arc::new(Config::load().unwrap()),
learned: Arc::new(LearnedConfig::load().unwrap()),
@ -299,7 +304,7 @@ fn open_debug_lap(
) {
if let Some(screenshot_bytes) = &lap.screenshot {
let screenshot = from_png_bytes(screenshot_bytes);
let ocr_results = ocr::ocr_all_regions(&screenshot, config.clone(), learned, ocr_cache);
let ocr_results = ocr::ocr_all_regions(&screenshot, config.clone(), learned, ocr_cache, false);
let debug_lap = DebugLap {
screenshot: RetainedImage::from_image_bytes("debug-lap", &to_png_bytes(&screenshot))
.unwrap(),
@ -397,6 +402,7 @@ impl eframe::App for AppUi {
ui.separator();
ui.checkbox(&mut state.debug_frames, "Debug OCR regions");
ui.checkbox(&mut state.should_sample_ocr_data, "Dump OCR training frames");
});
egui::CentralPanel::default().show(ctx, |ui| {
egui::ScrollArea::vertical().show(ui, |ui| {

View File

@ -54,7 +54,7 @@ async fn run_ocr_cached(
hash: String,
region: &crate::image_processing::Region,
config: Arc<Config>,
filtered_image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>>,
filtered_image: &image::ImageBuffer<image::Rgb<u8>, Vec<u8>>,
) -> Option<String> {
let cached = {
let locked = ocr_cache.read().unwrap();
@ -66,7 +66,7 @@ async fn run_ocr_cached(
return cached;
}
}
match run_ocr(&filtered_image, &config.ocr_server_endpoint).await {
match run_ocr(filtered_image, &config.ocr_server_endpoint).await {
Ok(v) => {
if use_cache {
ocr_cache.write().unwrap().insert(hash.clone(), v.clone());
@ -83,6 +83,7 @@ pub async fn ocr_all_regions(
config: Arc<Config>,
learned: Arc<LearnedConfig>,
ocr_cache: Arc<OcrCache>,
should_sample: bool
) -> HashMap<String, Option<String>> {
let results = Arc::new(Mutex::new(HashMap::new()));
@ -100,8 +101,18 @@ pub async fn ocr_all_regions(
let value = if let Some(learned_value) = learned.learned_images.get(&hash) {
Some(learned_value.clone())
} else {
run_ocr_cached(ocr_cache, hash, &region, config, filtered_image).await
run_ocr_cached(ocr_cache, hash, &region, config.clone(), &filtered_image).await
};
if let Some(sample_fraction) = &config.dump_frame_fraction {
if rand::random::<f64>() < *sample_fraction {
let file_id = rand::random::<usize>();
let img_filename = format!("ocr_data/{}.png", file_id);
filtered_image.save(img_filename).unwrap();
let value_filename = format!("ocr_data/{}.txt", file_id);
std::fs::write(value_filename, value.clone().unwrap_or_default()).unwrap();
}
}
results.lock().unwrap().insert(region.name, value);
}));
}

View File

@ -140,6 +140,7 @@ pub struct AppState {
pub debug_frames: bool,
pub saved_frames: HashMap<String, DebugOcrFrame>,
pub should_sample_ocr_data: bool,
pub config: Arc<Config>,
pub learned: Arc<LearnedConfig>,

207
src/training_ui.rs Normal file
View File

@ -0,0 +1,207 @@
use std::{
collections::HashMap,
io::Write,
path::{PathBuf, Path},
sync::{Arc, Mutex},
thread,
time::Duration,
};
use eframe::{
egui::{self, Ui, Visuals},
emath::Vec2,
epaint::Color32,
};
use egui_extras::RetainedImage;
use image::RgbImage;
use crate::{image_processing::to_png_bytes, local_ocr};
#[derive(Default)]
struct TrainingUi {
training_images: Vec<TrainingImage>,
current_image_index: usize,
learned_char_hashes: Vec<(String, char)>,
}
struct TrainingImage {
img_file: PathBuf,
data_file: PathBuf,
image: RgbImage,
text: String,
ui_image: RetainedImage,
char_images: Vec<RetainedImage>,
char_hashes: Vec<String>,
}
impl TrainingImage {
fn save_ocr_text(&self) {
std::fs::write(&self.data_file, &self.text).unwrap();
}
fn delete_data(&self) {
let _ = std::fs::remove_file(&self.img_file);
let _ = std::fs::remove_file(&self.data_file);
}
}
fn get_training_data_paths() -> Vec<(PathBuf, PathBuf)> {
let mut data_paths = Vec::new();
for path in std::fs::read_dir("ocr_data/").unwrap() {
let path = path.unwrap();
if let Some(ext) = path.path().extension() {
if ext.to_string_lossy() == "png" {
data_paths.push((path.path(), path.path().with_extension("txt")));
}
}
}
data_paths.sort();
data_paths
}
fn predict_ocr(hashes: &[(String, char)], hash: &str) -> Option<char> {
let hash = img_hash::ImageHash::<Vec<u8>>::from_base64(hash).unwrap();
let (_, best_char) = hashes.iter().min_by_key(|(learned_hash, c)| {
img_hash::ImageHash::from_base64(learned_hash)
.unwrap()
.dist(&hash)
})?;
Some(*best_char)
}
fn get_training_data() -> Vec<TrainingImage> {
let mut data = Vec::new();
for (img_file, ocr_file) in get_training_data_paths() {
let buffer = std::fs::read(&img_file).unwrap();
let image = image::load_from_memory(&buffer).unwrap().to_rgb8();
let ocr_value = String::from_utf8(std::fs::read(&ocr_file).unwrap()).unwrap();
let ui_image = load_retained_image(&image);
let char_images = local_ocr::bounding_box_images(&image)
.iter()
.map(load_retained_image)
.collect();
let char_hashes = local_ocr::compute_box_hashes(&image);
data.push(TrainingImage {
img_file,
data_file: ocr_file,
image,
text: ocr_value,
ui_image,
char_images,
char_hashes,
});
}
data
}
fn load_learned_hashes() -> Vec<(String, char)> {
let path = Path::new("learned_chars.txt");
if !path.exists() {
return Vec::new();
}
let data = String::from_utf8(std::fs::read(path).unwrap()).unwrap();
let mut parsed = Vec::new();
for line in data.lines() {
if let Some((c, hash)) = line.split_once(" ") {
if let Some(c) = c.chars().nth(0) {
parsed.push((hash.to_owned(), c));
}
}
}
parsed
}
fn load_retained_image(image: &RgbImage) -> RetainedImage {
RetainedImage::from_image_bytes("", &to_png_bytes(image)).unwrap()
}
pub fn training_ui() -> anyhow::Result<()> {
let options = eframe::NativeOptions::default();
let state = TrainingUi {
training_images: get_training_data(),
learned_char_hashes: load_learned_hashes(),
..Default::default()
};
eframe::run_native("OCR Trainer", options, Box::new(|_cc| Box::new(state)));
}
impl eframe::App for TrainingUi {
fn update(&mut self, ctx: &egui::Context, _frame: &mut eframe::Frame) {
ctx.set_visuals(Visuals::dark());
egui::CentralPanel::default().show(ctx, |ui| {
egui::ScrollArea::vertical().show(ui, |ui| {
let current_image = &mut self.training_images[self.current_image_index];
if ui.button("Skip").clicked() {
self.current_image_index += 1;
}
if ui.button("Delete Data").clicked() {
current_image.delete_data();
self.current_image_index += 1;
}
if ui.button("Save OCR fix").clicked() {
current_image.save_ocr_text();
}
if ui.button("Learn").clicked() {
for (i, char) in current_image.text.chars().enumerate() {
if let Some(hash) = current_image.char_hashes.get(i) {
self.learned_char_hashes.push((hash.clone(), char));
eprintln!("Learned {}={}", hash, char);
}
}
self.current_image_index += 1;
}
if ui.button("Learn and delete").clicked() {
for (i, char) in current_image.text.chars().enumerate() {
if let Some(hash) = current_image.char_hashes.get(i) {
self.learned_char_hashes.push((hash.clone(), char));
eprintln!("Learned {}={}", hash, char);
}
}
current_image.delete_data();
self.current_image_index += 1;
}
if ui.button("Save learned results").clicked() {
let mut buffer = String::new();
for (hash, c) in &self.learned_char_hashes {
buffer += &format!("{} {}\n", c, hash);
}
let mut file = std::fs::OpenOptions::new()
.append(true)
.create(true)
.write(true)
.open("learned_chars.txt")
.unwrap();
file.write(buffer.as_bytes()).unwrap();
}
current_image.ui_image.show(ui);
ui.label("OCR value");
ui.text_edit_singleline(&mut current_image.text);
let predicted: String = current_image
.char_hashes
.iter()
.filter_map(|hash| predict_ocr(&self.learned_char_hashes, hash))
.collect();
if predicted == current_image.text {
ui.colored_label(Color32::GREEN, format!("Predicted: {}", predicted));
} else {
ui.colored_label(Color32::RED, format!("Predicted: {}", predicted));
}
ui.separator();
for c in &current_image.char_images {
c.show(ui);
}
for c in &current_image.char_hashes {
ui.label(c);
if let Some(predicted) = predict_ocr(&self.learned_char_hashes, &c) {
ui.label(format!("Predicted: {}", predicted));
}
}
});
});
}
}